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1. INTRODUCTION

This report examines Gough's (1974) derivation of the solid-phase portion of the Navier-Stokes
equations of motion for the NOVA series of interior ballistic (IB) codes. The motivation for this report
is the better understanding of the assumptions used in the formulation and how these may pertain (o
experimental data input for constitutive modeling. Also, this report provides the derivation in a concise

location and step by step format for the unfamiliar reader.

2. DERIVATION OF THE CURRENT SOLID-PHASE EQUATIONS

The following is the derivation of the solid-phase Navier-Stokes cquations for IB using the original
formal averaging procedure used by Gough in 1974, Gough did not explicitly demonstrate this derivation
of the solid-phase portion in his thesis. The more general, one-dimensional, isothermal Navier-Stokes

equations include the solid-phase continuity cquation,

dp -
S V) =0, M
and solid-phase momentum equation,
NPk ;) - - = ~
-—-5—1 o V'(P,“,“s * Ts) = ¢:V: : @

The principle assumptions to be made initially are: (1) that the propellant is compacted isothermally,
(2) the stress tensor T is macroscopically isotropic; and (3) the solid-phase mass production term is zero.
The isothermal assumption considering the themmal scale, including combustion, assumes that the

temperature rise of the propellant due to compaction is small with respect to the energy released by
combustion. The isotropic assump:ion was made so the mixture stress (i.e., the intrinsic stress multiplied
by the solid-phase volume fraction) could be more easily isolated from the gas pressure; this also
eliminates any shear. The mass production is assumed zero over small time intervals due to the small

production losses in comparison to the convective term.

Following the formal averaging procedure outlined in Gough’s thesis, the momentum equation may

be reduced through the following steps. No solid-phase mass production implies




d(pu,) e -
_.,a.l.._f..+V'(p,u_,u,+T,)=0. (3)

Turbulent fluctuations of a variable are accounted for through the following typical notation, i.e.,

p, = <p>* + pr (%)

U= <u >’ v ul 5

and so on for other variables. Formal averaging may be written in either intrinsic (porosity weighted) or

nonintrinsic forms,

<P (0B (X 0)d, (%ot) + T (x,0)>
=€ (X 0)<p, (5 024 (F. )&, (Z,8) + T (5,1)>°

or = ﬂ,t gy -x.t- t)(Ps@'.t)J,(f.t)E,(f,t) + f,(j'.t))dth . (6)
sS

The intrinsic average is identified by the term with the superscript s. Equation 6 introduces an arbitrary

weighting function, g, which is assumed to be continuously diffcrentiable and satisfies the normalization

condition
_[ J f fg(y‘,t)dm 1. %
Using
gy -x1-0) _ _algy -5t -1) ®)
axi ayl '

the development of the divergence term in Equation 3 may commence with the knowledge that p, T, and
@ are independent of the spacial dummy variable, y;, allowing




d
9x;

t

<P, (% 0)d (Z,0)a (Xt) + T (Z.0)>
= L, g(y - x.1 - :)g—(ps(y’,r)z?s(y”.r)u‘,(y‘.t) +T (y.1))dvd
5 i

-Lt -58’-,-[8()—" -x,1 -t)<P:()"‘-T)J,(f,t)l;,()7,t) + ;:(;,1))](1‘/‘11 (9

s S

Using the definition of the nonintrinsic average and Gauss’ theorem, both the divergence and temporal

derivative terms of the momentum equation may be expanded as:

J
R

1

= <%(ps(;,l);s(},f);:(;,[) + 7.:_‘.(;,[))>

]

<P (X ) B (% ) E (xt) + T (%0)>

- fzsg(g(f -1 - (P (7. VE (T DU (y.T) + 7.::()7'1))). paa  (10)

and
%<p,(§,z)z}‘s(£,:)> =<.§(ps(;.t)£;s(;,t))>
+ f):sg(g(y~ - 5T - )P, (51U ().T))w - ndA, (i

where w is the relative velocity between the phases. The following nonintrinsic averaged form of the

momentum equation may then be written using Equations 10 and 11,

d<p,u,>

— Vo(<pu,u,>+<T,>)= ~f2:8g(f_, v p,u (,-w)) ndA . (12)




Applying the intrinsic average 1 Equation 12 produces

dle <p; >y ' - - -~ |
- 3; ’ 'v'(t:(‘(p;“:“:},' (T:}J}f
‘"&u’g{r!';}:“:{“t""})‘““A (1

To funher reduce the erms of this equation, one may wnie ow the expansions fiv the Iversging
technique for products of two vanables,

and three variables,

- -

7 Fe . - )
<P, U, u, > -<(<p'> op’)(<u,> > U,
’ - ¥ T » - 1 Q'Di - ¥ -’}(
a < (p’> <u’) » <g’) “:"%““;’ »p’u’)} (u‘D 43’}}

- - -

- - . - . -
= <(<p,>'cu,>'<u, > v <cp >ty cu, > vp <u >cu,> cplu cu >’

PR L. e e « " ;e e e .
> <p’> <M"> u’»<p‘> H’H‘*p' <u,> a“p,u,u, P> <
%

The average of a fluctuating term alone, or the average of a fluctuating term multiplied by an averaged
term, is zero, allowing the erms containing a single, averaged fluctuating variable to be neglected. The
terms containing two or more fluctuating variables multiplied together and then averaged are not zerm.
It is also noted that the average of an averaged property is the average, that is,




<<p, w>’> e <put i16)

This results in averaged momentum terms nmilar 10 Gough's equaton (3 1 4.6),

i > wcp aicu »t e <pruts’ 1
<P, i, ,>" wap, L P, s, R (R

and equation (3.1.47),

- - - ;
<pu,u,> mcp>icu, > cu,> »<p > <w u, >

- - P « " @ ¢ Te " kg
v lcu, > <p U > <O W M > (1K)

for the gas phase terms.

With this general background. the averaging of the momentum ogquation may procecd. The temporal

term is expanded using Equation 17 as

(e, <p,u.>°) - ,d(e, <p > decu,>  de<p® u® >’
( s p" d i '<H)‘ (’ p’ ) . €;<p1>' ! * : P d 4 (19
dt ot dt a1
The divergence term of Equation 12 expands to
V'(E,(<D,J,x:,>‘ . <T,>’)) =V -(e,(<f,>‘))
+ V-e,(<p,>’<§,>’<§,>‘ + <p,>‘<§:§:>‘
- - —y = (20}
* "y ¥ * "y =y
+2<u > <piu > v <p U u > )




Using the relation
V owe «(V wu+u-(Va), ¥y

which may be easily demonstraied in Canesian coordinates for a well behaved vector i, the expansion
of the divergence term given in Equation 20 may then be wnitten simiar 10 Gough's equadon (3.2.3 4)
for the gas phase:

P Qcy >

-

. - -} v . e
v (5,(<P,“,“,> + <T,> ))*t,q} % ,>
e<u >V »(c,<p,>’<§,>' . e,<p’,£‘,>’)

-

* £J<pl>’<53>“ v‘:“!)‘ * v .{CI(TI)‘)

R s a0 T ! " y L ' s ~e e
% {e,(<p,> <u® u®, > v o<u >'<p® u* >" o <p® ut u ,>’)} (12

With this and the temporal term in Equation 19 substituted into Equation 12, the momentum cquation

becomes

. ,9(g,<p,>") d<u,>! . g, <p®,u*,>")

<u> sg<p, >’
T} £ at dat

L2 iy ? ~ ] . F 2 F{ e e 1
> Veu >"+ <y, >'V (e,<p,:> <u, > sg<p” u’,> )

v e, <p¥ u”,

sg<p,><u,> - Vau,> V'(£,<T,>’)

. V.(£‘(<p‘>l<“t‘“0,>l . <J,>J<P',E',>: . (pa‘“¢’“0,>x))

-—&“g(f”p,i,(i,‘é))-ﬁd,\ . (23)




Similar operations with the restrictions of constant density, and nonreacting interfaces, transform the
continuity equation (Equation 1) into

d(e,<p,>* -
__E._.’..a.?i___z + Ve, (<p,>'<u,>")=0. (24)
Recognizing
<u, >* d<u >* - -
g, <p,>’ r, -e,<p‘>‘._.?.‘.{_. +£,<p,>‘(<u,>‘°v)<u,>’ (25)

and applying Equation 24, with the assumption of no relative motion of the phases (ic., u, = 4 AT

Equation 23 results in

D<u >* -

& <p, >t §V-(£,<T,>’)-62_,-—f):"g(T,)'EM. (26)
where
8, =-V- (e,(<p‘>’<5',5',>‘)) . 27N

Transformation of the unknown solid phase surface integral into a gas phase boundary condition may be
accomplished by introducing an intrinsic intergranular stress describing the total stress on the propellant
bed as

<7:,>’ =R + <fg>3. (28)
where the gas phase contribution is considered as a hydrostatic pressure only
<Tg>8 = <P,>% -1, (29

and the solid gas phase stress difference as

(i,-fg)';l‘*;;bp. (30




where this interphase stress difference is usually zero unles, the system is under reaction or surface
tension. Using the following integral theorem for the averaged value of an intrinsic property,

[ <TAV g avas = -Vie<T ) 31)

t
Ves

and applying Gauss’ theorem to this provides

I:[g<rg>8~idA--<rg>8~Ve‘. (32)
38

thus allowing the integral term from Equation 26 to be written using Equations 30 and 32 as

-&-"88 (T,) *ndA = - <T8>3'V88 + &:‘g (Tx - <T‘>3 ) ndA
(33)
+'g: g (Ap)- AdA .
58

The coupling stress integral on the left-hand side of Equation 33 is of both the averaged and fluctuating
portion of the solid phase stress tensor. The first integral on the right-hand side of Equation 33 is merely
the integral of the fluctuating portion of the gas phase stress tensor given by the relationship

'A:-=<T>3+T*. (34)

Equation 26 may be rewritten using Equation 1 and the integral form of Equation 32, noting that there

is a sign convention reversal of n for agreement with the gas phase, as

D
£,<p,>".__..l_)’__ + V- (e,<T,>")

=0, - <T8>3-Veg+fzsngg*-h'dA —Ath:g. (35)

Using Equation 28 to expand the stress term and letting

<p,>*=p,, (36)

8




results in

D<u >’ -
E,<p’>'.__.._5;f_,__ v g, Vep,>F o V=(£,R)

=8, ¢ Ji:“g'rx‘ - AdA - ApVe' . (7

where the subscript p denotes a propernty of the panticle. The panicle interfacial force werm given by the
integral on the right-hand side of Equation 37 is represenied as

m

- - £p,S -
E gT"-ndA-__'_E‘Y...f.cFav'. (38)
18 A

where <F>' is the microscopic interaction, drag. between the media.  Substituting this into Equation 35
results in the following form of the solid phase momentum equation:

e

Du

0, Dt: + g Vp, o V'(E‘R) =f, (39)
where
D ¢ -
—_— % 40
o "W 9

and the interphase forces, as well as the turbulent momenturn source term, are combined as

- E S bt .
f =8, +_..’..E‘i'_..’_<F>' - ApVe, . 41
mp

Further manipulation of the averaged equations reformulates the momentum equation, after linearization
of the stress term, into a recognizable wave equation as follows. The following averaged form of the solid
phase continuity equation,




P
may be rewritten as
De, -
Popr P&V Mpm
where
D ad
—_— a-v
T

(42)

(43)

(44)

Expanding the stress term in the momentum Equation 39, with R now represented as a hydrostatic stress,

V(e,R) =¢, VR «+ RVeg, ,

and further expanding the gradient term,

oR
o€,

8

VR = Vt-:8 .

where the mixture stress of the particles is o, = £.R, provides

dR
V(o) =|e,— - R |Ve, .
(©,) [ % ],

Let G(g,) be a compressive modulus such that

v (op) = G(e) Veg .

10

(45)

(46)

47

(48)




Substituting this into Equation 39 results in the following nonlinear momentum equation to be solved in
the IB code

Du -
€0y D“’ +€Vp +Gle) Ve, =f . (49)
P

Further assumptions are now made in order to model the stress term in the momentum equation. These
assumptions consist of: [4] f =0, no fluids in the propellant bed; [S] u - v= 0, the particles are initially
at rest (i.e., for small perturbations about a quiescent state); and (6] R = R(ex) only. The assumption of
no fluid in the bed allows the gas pressure term to be .icglected when computing the mixture stress. The
small perturbations assumption eliminates the convective portion of the substantial derivative, thus the
particles do not "flow,” thus only accelerations and interaction forces exist. Assumption (6] is only for
simplicity; of course, R is a function of temperature, contact surface area, and many other things which
may or may not be experimentally measurable. The one variable that is measurable in a bed compaction
test is the change in volume. This allows the computation of the porosity, assuming incompressibility or

given the intrinsic equation of state of the particles from a second experiment.

Applying these assumptions reduces the momentum Equation 49 to

ou
€50 pthﬂ + G,(g,)Ve, = 0, (50)
and the continuity equation (Equation 1) to
dg -
‘T:_.=—€-'0V‘up. (51)

One approach to deriving the solid phase wave speed is to take the derivative of the momentum equation
with respect to time. The assumption that the intergranular stress R is not a function of time permits,

-

epazu”+G(e )aVG =0, (52)
.sop—a"t-z" o\ S50 )=z Vg

11




where

dve «v|2% (53)
I -l
Using continuity equation (Equation 51), Equation 53 may be written as
de -
V(_;ti}s V(e,oV°up), (54
which is
= &,,(V2i, + Vourl (curlid ) . (55)

Irrotational flow implies that the curl of the velocity is zero. Substituting this into the momentum
equation, and dividing through by the porosity and density results in

i, . Go(&o)

Vii_ =0. (56)
Bt 2 pp P
This is a wave equation having a velocity of
2 Go(e.fo) , (57)
po P
(4
where, for the linearized case,
dR
Gg,,) = [e,,, o R ] : (58)

In the general nonlinear case, the function G behaves as a "stiffness” modulus which is the product
of the density and the propagation speed apz.

G(e,) = pya. . (59)

12




3. RHEOLOGICAL REQUIREMENTS

In the theory underlying Gough’s XNOVAKTC code (1990), the constitutive assumption which
defines the solid-phase stress tensor is embedded into the function G(g,) by specifying a functional
dependence of the propagation speed a, which is assigned for a system undergoing loading as

&,
€
8
and unloading
a,=a, (61)

where the user-supplied constant q, represents the speed of propagation during compressive loading when
the bed is at the settling porosity, £,,, and the constant @, represents the propagation speed derived from
the modulus during unloading from any state.

A functional dependance of op(es) may be developed by rewriting Equation 50 as

2
do (e € dc
”(’)=G(£s)=-_p£ al._g‘l =-_7 (62)
de, 8 € de,

Integrating this relationship from €, 10 £,,, Where €, is the current gas phase porosity and €, is the
settling porosity, and a, is the user-input propagation velocity of an infinitesimally small disturbance,

generates the loading function used within the XNOVAKTC IB code,

P af 2 |1 1
p 1
op(eg) = €. (_.. - ] (63)

8o €& &,

Both a; and a, are experimentally determined constants. The speed of propagation of a small disturbance
alz is usually about an order of magnitude smaller than that of azz. These relations can be adjusted to
the Robbins and Conroy (1991) model, which was performed on the data from the Birkett (1981) test rig

as shown in Figure 1.

The four experimental data sets in Figure 1 end at different final force levels, while the functional data
are plotted for four different disturbance propagation speeds, a,, increasing from 100 m/s to 400 m/s from

13




the lower to the upper computed curve. €, is 0.45 and the diameter of the test cylinder was 7.62 cm.
The curves shown in Figure 1 exhibit the correct trend. However, the chosen fixed wave speed does not
represent the curving of the propellant experimental data as well as one might want.

The experiments which determine the user-input propagation velocity usually choose one value of the
modulus from limited, typically below 1 MPa, axial stress levels. The data are obtained by compressing
a bed of propellant in a cylinder and measuring the applied force and corresponding displacement. From
this, a modulus, G, is determined at the settling porosity and then the simple relation

al = —Cz- (64)
\I s

is used to obtain the compressional propagation speed for a small disturbance. Currently, only a limited
amount of data is available for gun propellants of interest at this time (Conroy 1992). In addition,
estimating the value of the modulus of the propellant involves a certain amount of ambiguity, because the
0.2% rule for determining the modulus is not applicable 10 a structure, such as a bed. Unfortunately, the
predicted values of stress (particularly at small values of porosity, eg) are rather sensitive to the value of
a, (as shown in Figure 1), which is dependent on the calculation of the modulus.

Class 3 HMX is a granular explosive with a settling porosity of 34.7%, whereas TS-3659 is a double-
base ball propellant with a settling porosity of 40.0%. Figure 2 shows the region in which the propellant
exhibits a stiffening behavior as the porosity decreases. Thus, to model the entire range of the propellant
behavior, as potentially predicted in Figure 3 by the XNOVAKTC code, the experimental data should
exceed the "knee" effect which typically occurs at a mixture stress (bed stress) of about 30 to 40 MPa for
double-base propellants.

As a means of improving the current formulation, at least two approaches may be appropriate. The
first, a direct correlation of experimental data, can produce the loading function for insertion into the code
and thus a wave speed from the derivative thereof. Second, modeling of the bed aggregate from single
grain behavior is more fundamental. In the past, modeling has been performed on various porous
materials such as the elaborate spherical particle in the contact model of Brandt (1955) and the spherical
pore collapse model (Carroll and Holt 1972). Brandt extends his work to include nonspherical particles
continuing to apply Hertz's (1881) theory, which is valid as long as the particles have an average radius

14
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Figure 2. Experimental data for class 3 HMX and TS-3659 and Kooker's correlations.
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of curvature. There is some work on-going in this field fo: granular propellants ai the ARL (Gazonas
1992), but is not otherwise being pursued (o this author’'s knowledge. Costaniino ( 1983) gave a review

of the various models for energetic matenals denved from rock mechanics.

A constitutive modeling comparison has been performed by Conroy and Kooker (1991). This repont
highlights Kooker’s (Kooker and Anderson 198S5) incorporation of the solid phase equation of state w
model the compressibility and his correlation of experimental data, a modified from of Walton's (1977)
equation. This was to demonstrate the potential prediction differences between the current model and one
in which the data is correlated directly, currently isothermally. The results show some significant
differences as Kooker's model tracks the solid matenal from the settling porosity to where it is a

compressed solid with no voids.

4. DISCUSSION AND CONCLUSIONS

The formulation of the solid-phase portion of the current NOVA family of codes has been thoroughly
described. The required closure for this portion of the IB model has been explained. Both analytical
models, and analytical/experimental models have been examined by rescarchers as a means 1o provide the
stress strain relationship needed by the derived solid-phase momentum equation. Previous investigators
have resonied 1o using experimental propellant data to provide inputs for specific derived constitutive
relationships from soil mechanics. The use of experimental data directly has also been investigated and
is a viable and appropriate starting point for improving the current model, however, the data must be
obtained in the regions to be investigated, which most probably will include the region above 100 MPa
as presented in Figure 2. Noncoincidental efforts are currently underway 1o obtain quasi-static isothermal
bed compaction data to 150 MPa for various propellants between BRL and Naval Surface Warfare Center,
White Oak.
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LIST OF SYMBOLS

= User input small disturbance propagation velocity

= Compressional wave speed used in the solid phase wave equation
= Solid phase intemal energy

= Microscopic interaction between the media

Interphase forces

Stcady-state drag per unit volume

Bed modulus

Bed modulus at the settling porosity

Normalized weighting function used in averaging

L

= Identity matrix
= Gas phase mass production per unit volume

= Pressure

= Gas phase pressure

= Solid phase pressure

= Phase stress difference

= Solid phase heat flux

= Intergranular stress (hydrastatic)

i

Intergranular stress tensor

Burning rate of the solid phase propellant

il

Interphase surface area

= Solid phase stress tensor

0

Solid phase velocity

Volume

]

= External source velocity

= Relative velocity between the phases
= Interfacial velocity between the media
= Position variable

= Dummy variable of spacial integration
= Porosity
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€ = Gas phase porosity

= [nitial loading Porosity

g = Solid phase porosity

¢, = Solid phase mass generation

p, = Solid phase density

= Bed mixture stress

8,; = Turbulent momentum source term

T = Dummy variable of temporal integration
= Subscript referring to the gas phase

s = Subscript referring te the solid phase

* = Superscript referring 1o the fluctuating portion of the variable

ng = Interfacial surface separating the phases
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